

SHELLTER PRO PLUS
Exclusive Features

Table of Contents

INTRO .. 2

LICENSE EXPIRATION CHECK UPDATES ... 2

SHELLTER PRO PLUS 8.X – ADDITIONAL FEATURES.. 3

EXTENDED RUNTIME EVASION CAPABILITIES III... 3

CONFIGURATION ENHANCEMENTS I ... 3

ANTI-ANALYSIS CONCEALMENT I ... 3

ENHANCED APPLICATION DLL BACKDOORING I ... 4

ENHANCED WINDOWS BUILT-IN MODULES COMPATIBILITY .. 5

ENHANCED APPLICATION DLL BACKDOORING II.. 6

TARGETED RUNTIME EVASION... 6

SHELLTER PRO PLUS 7.X – ADDITIONAL FEATURES.. 7

EXTENDED RUNTIME EVASION CAPABILITIES II.. 7

SHELLTER PRO PLUS 6.X – ADDITIONAL FEATURES.. 7

EXTENDED RUNTIME EVASION CAPABILITIES ... 7

AMBUSH PAYLOAD EXECUTION ... 7

ANTI-DLL LOAD MONITORING.. 8

SHELLTER PRO PLUS 5.X - ADDITIONAL FEATURES .. 8

ADVANCED DEBUGGER DETECTION (KM + UM)... 8

ADVANCED VM/SANDBOX DETECTION.. 8

DECOY PAYLOADS .. 9

AES-128 PAYLOAD ENCRYPTION .. 9

ADVANCED SELF-UNHOOKING... 10

ADVANCED HEURISTIC UNLINKING OF AV/EDR MODULES... 10

ADVANCED NATIVE IMPORTS REDIRECTION FOR LOADED MODULES ... 10

ADVANCED STEALTH PAYLOAD THREAD CREATION .. 10

ADVANCED ETW EVASION ... 11

ADVANCED AMSI EVASION .. 11

ADVANCED SELF-PROCESS AND PAYLOAD THREADS PROTECTION ... 11

ADVANCED NATIVE SYSCALLS-BASED RUNTIME EVASION .. 11

INTRO

This document provides an overview of the exclusive features added in Shellter Pro Plus.

Shellter Pro Plus introduces several new features that provide runtime evasion against AV and EDRs.

It is recommended to operate Shellter Pro Plus via our GUI interface which provides access to all the
features and offers a simple and intuitive way of operating our software for best results.

For more details about how to use these features, run Shellter with the -h argument, and/or take a look at
the demos that are available through our official website.

Note: If you run Shellter in Windows 11, you need to change the default terminal in Windows
settings to “Windows Console Host”. The new “Windows Terminal” that may be used by
default has some compatibility issues with our console output.

If you still need to know more about a specific feature, send an email to support@shellterproject.com.

LICENSE EXPIRATION CHECK UPDATES

Some extra updates regarding license expiration checks have been applied, that will now affect also the
binaries where you inject your payloads.

Warning: From version 8.5 onwards, license expiration checks will also be embedded inside
the infected binary.

Several advanced features and payload execution functions will check if the license used during infection
has expired based on the date retrieved from the host where the binary is running.

When license expiration has been detected, several advanced features, such as dynamic unhooking of
new loaded modules, will cease to work.

Additionally, any subsequent payloads that may be dormant, will not execute once the license validity
date has lapsed.

Executing a binary for the first time on a host where the date indicates that the license used has expired
will have no effect on target; meaning that no runtime evasion or other advanced features will be used
and no payloads will ever run.

Please keep this in mind if you are about to start a security engagement that may be extended past the
expiration date of your license.

https://www.shellterproject.com/shellter-pro-plus-demos/
mailto:support@shellterproject.com

SHELLTER PRO PLUS 8.X – ADDITIONAL FEATURES

EXTENDED RUNTIME EVASION CAPABILITIES III

Several enhancements regarding runtime evasion have been implemented for this release.

We have also added the ability to remove suspicious access permissions from all proprietary memory allocations.

We are still working in this area to provide further flexibility and additional self -hiding abilities to the upcoming releases.

CONFIGURATION ENHANCEMENTS I

Some features configuration abilities have been upgraded by exposing more internal features through command line
arguments, including GUI interface, and in Manual (interactive) operation mode. This allows to optionally enable/disable
some runtime evasion features that were previously always enabled, when supported, by default. Applies to version 8.2
and above.

Currently, these include:

• ETW Evasion (--evadeETW)
• AMSI Evasion (--evadeAMSI)
• Native Imports Redirection (--redirectNativeImports)

There are obviously more internal features that apply for runtime evasion, which currently always apply when supported,
that may also be exposed to the user for further configuration in the future.

Note: In Auto mode these features are enabled by default when supported. See ANTI-ANALYSIS CONCEALMENT I section
for further information.

ANTI-ANALYSIS CONCEALMENT I

Some features will behave differently when a debugger (kernel-mode/user-mode) and/or hypervisor environment are
detected. If either of those two features are enabled and triggered then some runtime evasion features will never be
actioned. Applies to version 8.2 and above.

Currently, these include:

• ETW Evasion
• AMSI Evasion
• Native Imports Redirection

Note: Native Imports Redirection only applies if at least one hook is detected on a native function
(Nt*/Zw*) exported by Ntdll module. Otherwise, it will not be actioned even if it is enabled by the user.

Warning: If you wish to test any of the features listed above in a VM environment, then
make sure that hypervisor detection is disabled. In addition, if you have enabled kernel-
mode debugger detection, then make sure kernel debugger is disabled in the OS.

ENHANCED APPLICATION DLL BACKDOORING I

This feature enables the user to perform application backdooring, while maintaining its original
functionality, through one of its proprietary DLLs in a more efficient and reliable manner. When ‘DLL Load
Monitoring’ is activated, Shellter will monitor an application for DLL loading and exports calling events.
No modifications are made to any binaries at this stage. This feature is available in ‘Auto’ and ‘CLI/GUI’
operation modes. Shellter must run either in a physical Windows host or inside a Windows VM. Applies

to version 8.3 and above.

Command line arguments added: --monitorDllLoading/--MDLL

Note: If a DLL is statically linked to the executable, then it will not be logged. If a DLL is
logged, but no exported function is called, then it will not be displayed. See also “ENHANCED
APPLICATION DLL BACKDOORING II” for further updates applied to this feature.

Once monitoring stage has finished, the following information is reported:

• Full path of logged DLL.
o The full path is logged because an application may have multiple versions of a DLL that

are loaded from different sub-directories.
• Thread ID of the DLL loading event.

o This can be used to exclude DLLs that are being loaded by a new thread and only focus on
those that were loaded by the thread id that was reported first; for reliability purposes.

• First Export Called
o This is the first DLL-exported function that is called on runtime. When you infect the DLL,

this is the export that you must set for DLL execution tracing.
• Advanced features support.

o It reports that the DLL has advanced Shellter features support capabilities. This feature is
meant to be used always with Stealth mode enabled. For this reason, any DLLs that do
not support advanced features will not be shown to the user.

• Signing status.
o This will report if the DLL contains a digital signature. The signature is not validated. It can

be used to exclude signed DLLs and only target DLLs that were not originally signed.
Please note, this information only refers to embedded signatures. Integrity information of
DLLs and other files may be also signed via catalog files. This method is commonly used
for Windows system modules integrity checks.

Warning: Since the purpose of this feature is to backdoor an application through a
DLL, it is necessary that you always enable Stealth mode when you inject your
payload into the chosen DLL. Otherwise, the application will crash. Do not use any
DLLs that do not provide advanced features support.

Although it is not recommended to use this feature with system DLLs, it is possible to do so in some
cases by using a ‘DLL-Hijacking-type’ technique.

Warning: This may not work if you copy the infected system DLL across different
Windows versions due to required dependencies that may be missing.

An application may dynamically load also system DLLs, directly, or through another DLL that was loaded
previously. In that case depending on the DLL loading search path, the application may first try to load a

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/catalog-files

system DLL from its own directory. This opens the possibility to have an infected copy of a system DLL
inside the application’s directory.

Normally, in order to find system DLLs that may be potentially hi-jacked you should use an application
such as ‘ProcessMonitor’ and look for ‘NAME NOT FOUND’ results associated with ‘CreateFile’ operations.

Once you have found potential candidates, you can copy those into the appropriate directories of the
application as shown in ‘Process Monitor’ and repeat the DLL load monitoring with Shellter in order to
find out if any of those can be used for infection.

In addition, when you choose the target DLL to infect, either an application-proprietary or a system one
as described above, you must make sure that the infected copy may not be shared by multiple processes.
This is simply because another process loading the infected DLL, may call at first a different export
function causing that other process to crash or to execute again the same payload if it behaves in the
exact same way as the one you had targeted originally.

Warning: The infected DLL must not be shared by multiple processes at any point in
time. This is something that you will have to verify yourself.

Finally, you may come across some caveats when trying to trace the chosen DLL. Specifically, Shellter may
report that the DLL was not loaded correctly because some dependencies are missing. This is not a
Shellter bug, and there is a specific reason why this might happen.

Warning: You may come across some caveats when trying to infect a DLL. A specific
issue related to missing dependencies and a workaround are described below.

Some applications may store some DLLs in separate directories where not all the ir dependencies are
necessarily present. This is not an issue when the process runs because it can set the working directory
accordingly so that all dependencies will be loaded correctly on runtime.

However, when Shellter attempts to trace the chosen DLL, it will try to load it from the location where it
is stored at rest. Since it has no knowledge of how an application may decide to load its modules on
runtime, you may come across the aforementioned issue.

If this happens, there is a workaround that can be used to work with a specific DLL temporarily in order to
perform the execution tracing and inject a payload. You can try to copy the target DLL to a directory
where all its dependencies are located and repeat the infection attempt.

There is a demo on our website which demonstrates the required steps to use this great feature
effectively.

ENHANCED WINDOWS BUILT-IN MODULES COMPATIB ILITY

Shellter Pro Plus will now recognise the special imports mechanism used by Windows built -in native modules, thus
effectively allowing advanced features usage with those that support them. Applies to version 8.4 and above.

Several native Windows built-in modules, including executables and DLLs, have a special imports mechanism that goes
through some proxy DLL forwarders using a naming convention such as “api-ms-win-core-*”.

What that means, is that a Windows built-in DLL, for example “iertutil.dll” may import a function such as
“MapViewOfFile” through the “api-ms-win-core-memory-l1-1-0.dll” module which will actually return an IAT pointer to
the module (i.e., “kernel32/kernebase.dll”) that actually exports that function.

https://learn.microsoft.com/en-us/sysinternals/downloads/procmon
https://www.shellterproject.com/shellter-pro-plus-demos/

The Shellter’s imports parser will normally look for such functions that are imported by the clean PE binary target that we
wish to inject our payloads to, and will report if an appropriate combination of such APIs is imported. This allows Shellter
Pro Plus to use advanced features with a binary, such as “Stealth Mode”, “DBG/VM Detection”, “AES-128 Encryption”, and
so on.

In earlier releases, the imports parser would not recognise such DLL function import forwarders and so it would always
report that the target PE modules making use of them, have no support of advanced Shellter features, even if that was
not the case.

There is a demo on our website which demonstrates the required steps to use this great feature
effectively.

ENHANCED APPLICATION DLL BACKDOORING II

Further enhancements have been applied to the “ENHANCED APPLICATION DLL BACKDOORING I” feature in order to
facilitate the discovery of hi-jackable system modules by the target application. Applies to version 8.5 and above.

Shellter will now also log DLLs that are loaded from “C:\Windows*” sub-directories and will copy them temporarily inside
the target application’s folder while triggering automatically a second stage of the ‘DLL Load Monitoring’ feature.

Warning: In order to complete successfully the second stage of the ‘DLL Load
Monitoring’, the target application’s directory must be writable by the Shellter
process.

Once the second stage of the ‘DLL Load Monitoring’ has been completed, Shellter will delete all system modules that
were copied under the target application’s directory.

Finally, it will report to the user not just which proprietary DLLs were dynamically loaded by the target application, but
also any system module that was loaded from inside the application’s directory, which means that it can be infected by
Shellter and used potentially via the usual hi-jacking method.

TARGETED RUNTIME EVASION

We have introduced the ability to change the behaviour of some runtime evasion features based on detecting specific
security solutions that may be installed on the target host. Applies to version 8.5 and above.

This change of behaviour is handled automatically by the code that is bundled with the payloads of your choice and aims
to enhance further the evasion capabilities as well as the compatibility of the infected binaries with some special modes
of various security solutions.

Since this is something that we will have to manage in a reactive manner, the following list will be updated accordingly.

Currently, the following product will trigger this feature:

• CrowdStrike Falcon Security Sensor
o An incompatibility with the highest-security-level, aka “aggressive mode“ was reported by one of our

customers. This was caused by a change in the way this security solution reacts to certain events, and was
not a detection in itself. Upon detecting this product, our code will now trigger a switch of behaviour in
order to continue execution of the infected binary without any unwanted artefacts. This will happen at all
security levels because features can be moved around by their developers.

https://www.shellterproject.com/shellter-pro-plus-demos/

SHELLTER PRO PLUS 7.X – ADDITIONAL FEATURES

EXTENDED RUNTIME EVASION CAPABILITIES II

This release brings additional enhancements to the runtime evasion capabilities by adding code that monitors in real time
for modules being loaded into the process.

Advanced payloads usually require to load additional modules in order to complete several tasks. Since security software
will commonly monitor these events through kernel-mode callbacks, it may optionally hook additional modules beyond
the usual suspects such as Kernel32 and Ntdll.

The code that is bundled with your chosen payloads, will now monitor for newly loaded modules that are by default
found under the ‘KnownDlls’ directory and will make sure that these will also be checked for hooks and other artefacts.

SHELLTER PRO PLUS 6.X – ADDITIONAL FEATURES

EXTENDED RUNTIME EVASION CAPABILITIES

This release includes multiple updates towards runtime evasion against various techniques used by security software to
intercept searching and calling system functions; especially those exported by Kernel32, KernelBase, and Ntdll DLLs.

This particular entry might not look too fancy, but the internal updates associated with this enhancement offer a lot more
than meets the eye.

AMBUSH PAYLOAD EXECUTION

When this feature is enabled, it will set all injected payloads into hibernation until the specified benign DLL is loaded by
the process.

This special feature offers the ability to perform deep infection of an application while evading automated analysis
systems, and execution emulation.

It also offers the capability to simulate threat actors that compromise supply chains in order to distribute their malware
though legitimate software that have previously infected by using a more advanced technique.

Warning: In order to take advantage of this feature, the specified DLL must not be statically linked to
the target PE binary and/or to any other modules that are statically linked to it. It must be a DLL that
is dynamically loaded when the user interacts with a specific feature of the infected application.

There is a demo on our website which demonstrates the required steps to use this great feature effectively.

https://www.shellterproject.com/shellter-pro-plus-demos/

ANTI-DLL LOAD MONITORING

This feature removes user-mode registered callbacks that may be set by modules injected by security software inside the
process in order to monitor for new DLL loading events.

SHELLTER PRO PLUS 5.X - ADDITIONAL FEATURES

ADVANCED DEBUGGER DETECTION (KM + UM)

Shellter Pro Plus offers the ability to insert additional code that is able to detect both kernel and user
mode Windows debuggers. This feature is enabled by default in ‘Auto’ mode for both types.

If you use Shellter Pro Plus via ‘Manual’ mode and/or through our GUI/CLI interfaces you can choose the
level of detection in order to target one or the other type only if you wish.

If user mode debugger detection is enabled, the added code will check if the process is being debugged
by a user mode debugger.

If kernel mode debugger is enabled, the added code will check if the kernel debugger is currently enabled
in the OS, which is normally disabled by default.

Warning: If a debugger is detected, then the payloads will not run.

If remotely-fetched AES-128 key/iv pair feature is used then there will be no attempt to download this
data.

This feature can be combined with ‘Decoy Payloads’ feature.

ADVANCED VM/SANDBOX DETECTION

Shellter Pro Plus offers the ability to insert additional code that is able to detect both type -1 and type-2 hypervisors.

In a few words, both bare metal such as ESXI, Hyper-V, KVM etc…, and the usual suspects such as VMWare Workstation,
Oracle VirtualBox and so on.

If you use Shellter Pro Plus via ‘Manual’ or ‘Auto’ modes then you can only choose a VM detection profile based on
certain hardware resources available to the system, such as number of CPU cores, available RAM etc….

If you use Shellter Pro Plus via our GUI/CLI interfaces you can choose additional options, including our ‘SecretSauce’ which
is able to detect both hypervisor types by using low level checks.

Warning: If a hypervisor is detected, then the payloads will not run.

If remotely-fetched AES-128 key/iv pair feature is used then there will be no attempt to download this
data.

This feature can be combined with ‘Decoy Payloads’ feature.

DECOY PAYLOADS

Shellter Pro Plus offers the ability to insert a payload that will be used as a decoy in case the
Debugger/VM detections trigger.

This can be used to tamper with both automated analysis sandbox systems and with manual analysis of your binary.

The decoy payload can be as complex as you wish such as a reflective DLL that performs multiple actions, a payload that
crashes/shuts down/re-boots the system, or just a simple stager that connects to a fake IP/Port.

Warning: In order to use this feature, Debugger and/or VM detection must be
enabled.

You will then have to choose a minimum of 2 payloads to inject into the clean binary. Keep in mind that in this case the
first payload will be the decoy and the rest will be any ‘real’ payloads that you wish to execute normally.

So, make sure that you don’t use one of the good payloads as the first one if you enable this feature.

If remotely-fetched AES-128 key/iv pair feature is used then there will be no attempt to download this
data. The decoy payload will be encrypted using a separate AES-128 key/iv pair which will be embedded
inside the binary.

Warning: If you don’t enable the decoy payload feature and a Debugger/VM
are detected, then none of the injected payloads will run.

AES-128 PAYLOAD ENCRYPTION

Shellter Pro Plus encrypts all payloads with AES-128 (CBC mode) algorithm by using a key/iv pair that is generated
randomly every time.

Normally, this pair is embedded inside the binary that will run your payloads , but there’s also the option to fetch the
decryption key/iv pair from a remote location.

This allows you to control for how long someone could potentially analyse your special payloads in case they get a copy of
your binary. Once you have removed the keys from your server/endpoint, nobody will be able to decrypt and analyse
them.

Two methods are currently supported:

1. HTTP/HTTPS URL
2. UNC

Shellter Pro Plus will ask you to supply the full remote path to the file that contains the AES key information data.

For example, “https://myserver.com/dir1/dir2/key.aes” or “\\myserver.com\\dir1\\dir2\\key.aes”.

A key file with the specified name will be saved locally in the working directory using the file name that you specified in
the path (i.e., “key.aes”). This file must be placed at the exact remote path as specified previously.

When using a URL to fetch the data the following rules apply:

1. Can use both HTTP and HTTPS protocols.
a. Redirections from HTTP to HTTPs are allowed.
b. Redirections from HTTPS to HTTP are not allowed.

2. SSL Certificates checks.
a. Validity dates.
b. Hostname given in the request.

You can also use UNC type paths to fetch the key from another host on the same or another network.

Warning: Whichever method you use, you need to make sure that the file is accessible
without requiring some sort of authentication.

ADVANCED SELF-UNHOOKING

Shellter Pro Plus offers the ability to insert additional code that is able to remove hooks placed in native
and other Ntdll functions. These hooks are commonly used by security software to monitor for abnormal
behaviour before a system call is executed.

This additional injected code will run before your payloads in order to remove such ‘redirections’ to the
monitoring code that is already loaded inside the process by the security software during process
initialisation.

ADVANCED HEURISTIC UNLINKING OF AV/EDR MODULES

Shellter Pro Plus offers the ability to insert additional code that is able to unlink decoy modules placed
inside the “Process Environment Block” (PEB) “Loader Data” linked-list structures that provide
information for all loaded modules in the process.

Some security software may use those decoy modules in order to detect manual parsing of the export
table of system modules, most commonly those of Kernel32 and Ntdll, by renaming the original modules
and setting the decoys earlier in the linked list.

ADVANCED NATIVE IMPORTS REDIRECTION FOR LOADED MODULES

Shellter Pro Plus offers the ability to insert additional code that is able to redirect “Import Address Table”
(IAT) pointers of all loaded modules that hold addresses of native Ntdll functions in order to evade those
hooks even if they get replaced by the security software.

Note: See ANTI-ANALYSIS CONCEALMENT I section for further information.

ADVANCED STEALTH PAYLOAD THREAD CREATION

Shellter Pro Plus Plus offers the ability to insert additional code that is able to kick of the main thread of each of the
injected payloads by using legitimate code pivots that reside inside the already loaded modules of the process.

This helps to evade detections that look for suspicious thread start activity that occurs when the start address resides
outside of a loaded module.

ADVANCED ETW EVASION

Shellter Pro Plus Plus offers the ability to insert additional code that is able to blind the “Event Tracing for Windows”
(ETW) functionality for the current process.

This is normally used in order to log specific events that occur inside a process which are then evaluated by the security
software.

Note: See ANTI-ANALYSIS CONCEALMENT I section for further information.

ADVANCED AMSI EVASION

Shellter Pro Plus Plus offers the ability to insert additional code that is able to blind the “Antimalware Scan Interface”
(AMSI) of Windows.

This is normally used by Windows Defender Windows Defender and other security software in order to scan memory
buffers of the process upon request.

Note: See ANTI-ANALYSIS CONCEALMENT I section for further information.

ADVANCED SELF-PROCESS AND PAYLOAD THREADS PROTECTION

Shellter Pro Plus Plus offers the ability to insert additional code that is able to modify the security information of the
process executing your payloads as well the security information of their main threads that are kicked off by our code.

This can make manual analysis through debugging to become harder since some usermode debugger’s process access
requests may be blocked.

ADVANCED NATIVE SYSCALLS-BASED RUNTIME EVASION

Shellter Pro Plus Plus does all the above by using native syscalls in order to evade hooks and other monitoring code
injected in the process that executes your payloads.

In addition, extra low-level techniques are implemented in order to tamper with the ability of security software to detect
the usage of direct syscalls.

Author: Kyriakos Economou

Insainted Ltd - www.ShellterProject.com

Twitter: @kyREcon / @ShellterProject

Email: kyrecon@shellterproject.com / sales@shellterproject.com

https://www.shellterproject.com/
https://twitter.com/kyrecon
https://twitter.com/shellterproject
mailto:kyrecon@shellterproject.com
mailto:sales@shellterproject.com

